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Abstract— Point clouds are widely used as geometric data in
various deep learning tasks like object detection and segmenta-
tion. However, in real-world scenarios, partial point clouds are
often encountered due to limitations in sensors, occlusions, and
other factors. The classification of objects from partial point
clouds is a difficult task because of the sparsity, noise, and
lack of complete representation of objects. This project aims
to create a 3D object classification system that can classify
objects from partial point clouds. To overcome the challenges,
the GRNet neural network architecture is used to predict the
missing data and complete the partial point clouds, which
are then processed by PointNet, a deep learning framework
that directly handles raw point clouds for object classification.
PointNet++ is used as a baseline for comparison, as it is an
extension of PointNet that is specifically designed to handle
varying-density point clouds and has demonstrated superior
performance in object classification tasks. The proposed method
in this project performs equally or better than PointNet++.

I. INTRODUCTION

Point clouds are sets of points in three-dimensional space
that represent the surfaces of objects or environments. They
can be thought of as a 3D equivalent of a digital image, where
each point in the point cloud represents a pixel in the image.
Point clouds provide a detailed and accurate representation of
the shape and structure of objects in three-dimensional space
and hence can be used for 3D representation of data. Point
clouds are simple structures and easy to learn from, unlike
meshes which are irregular and complex. Point clouds can
be easily generated from 3D scanning devices such as Lidar,
which makes them a popular choice for applications such
as autonomous vehicles, robotics, and augmented reality.
Additionally, point clouds can be efficiently processed by
deep learning algorithms to perform various tasks such as
object detection, segmentation, and classification.

Point clouds are often used in 3D object classification,
where the goal is to classify objects based on their 3D shape
using point clouds as input. PointNet and PointNet++ are
popular deep learning methods that are used for processing
raw point clouds in 3D object classification tasks.

Point clouds can be affected by occlusions or missing data,
which can make it difficult to reconstruct the complete geom-
etry of an object or scene. Partial point clouds are a common
occurrence in real-world scenarios due to occlusions, sensor
limitations, and other factors. The main limitation of partial
point clouds is the sparsity and noise in the data, which can
lead to incomplete or inaccurate representations of objects.
This makes it challenging to classify objects from partial
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point clouds, as the absence of complete information can
result in misclassification or incorrect identification.

The partial point cloud problem can be solved through
partial point cloud completion. Partial point cloud completion
is the process of predicting the missing data in a partial point
cloud to obtain a more complete and accurate representation
of the object. This can be achieved using various techniques
such as deep learning-based methods, which learn to predict
the missing data based on the available data.

Several techniques have been developed to reconstruct a
complete 3D point cloud from an incomplete one, such as
PCN [1], GRNet [2], and TopNet [3]. However, methods
like PCN and TopNet directly use Multi-layer Perceptrons
(MLPs) to process point clouds, which may not capture all
the structural details and context of the point cloud. In con-
trast, GRNet uses 3D grids as an intermediate representation
to regularize the unordered point clouds. GRNet comprises
two differentiable layers, Gridding and Gridding Reverse,
which enable the conversion of point clouds to 3D grids and
vice versa without losing structural information. GRNet also
consists of a differentiable Cubic Feature Sampling layer,
which extracts contextual features from neighboring points.
Additionally, it has a new loss function called Gridding Loss,
which measures the L1 distance between the predicted and
ground truth 3D grids of the point clouds to recover fine
details.

In this project, our aim is to classify objects from par-
tial point clouds. We used GRNet for partial point cloud
completion. These completed point clouds are then given
to PointNet framework for classification. The partial point
clouds required for the task are generated from ShapeNet [4]
and ModelNetl0 [4] datasets. Figurel shows the proposed
system architecture.

We compared the classification performance of our pro-
posed method with PointNet++, which is considered as a
strong baseline method. PointNet++ is built on PointNet by
introducing hierarchical feature learning, where the input
point set is recursively partitioned into a nested hierarchy
of local regions. This allows PointNet++ to capture local
structures in the point cloud with increasing contextual
scales, which improves its ability to recognize fine patterns
and generalize to complex scenes.

Additionally, we compared the performance of PointNet
and PointNet++ on object classification from full point
clouds.
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Fig. 1: Proposed System Architecture: The proposed system architecture consists of two key components - the GRNet
network and PointNet. The system takes partial point clouds as input. The GRNet architecture predicts missing data and
completes partial point clouds, followed by processing the completed point clouds for object classification. Overall, the
proposed system architecture combines the strengths of both GRNet and PointNet to provide an end-to-end solution for
completing partial point clouds and classifying objects within them.

II. BACKGROUND
A. GRNet

GRNet [2] is a deep learning architecture which is capable
to generate high-quality, dense point clouds from incomplete
point clouds. GRNet, as shown in figure 2, is composed of
three differentiable layers: Gridding, Gridding Reverse, and
Cubic Feature Sampling in addition to 3D CNN and MLP.
The gridding layer is designed for point cloud completion.
It first converts partial point cloud into a regular grid. The
grid is regular in the sense that the points in the grid are
evenly spaced. In Gridding layer, all vertices of the 3D
grid cell corresponding to a point to are weighted with an
interpolation function to obtain the geometric relations of
the point cloud. After this, a 3D CNN with skip connections
(residual network) is applied to learn context and spatially-
aware features for completing missing cells of the incomplete
point cloud. Gridding Reverse transforms this output 3D grid
into a coarse point cloud, and Cubic Feature Sampling does
features extraction for each point in the coarse point cloud
by concatenating the features of the respective eight vertices
of the 3D grid cell. Finally, an MLP is used to obtain the
completed point cloud.
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Fig. 2: GRNet Architecture

B. PointNet

Figure 3 shows the architecture of the PointNet [5] net-
work for classification and segmentation. PointNet is highly
effective in classifying point clouds that are in arbitrary
orientations and positions. PointNet comprises two main
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Fig. 3: PointNet Architecture

components: an input transformation layer and a feature
transformation layer. The input transformation layer utilizes
a shared multi-layer perceptron to convert the input point
cloud into a canonical representation that is invariant to
permutations and geometric transformations. Meanwhile, the
feature transformation layer learns features from the canoni-
cal representation that are also invariant to permutations and
geometric transformations. The point features are then ag-
gregated by max-pooling and fed to a multi-layer perceptron
(MLP) to output classification scores for k classes. PointNet
uses a symmetry function, which is max pooling in this case,
to handle unordered input point clouds. This ensures that
PointNet can classify point clouds irrespective of the order
of the points in the input. The numbers in brackets represent
the layer sizes in the MLP, and batch normalization is used
for all layers with ReLU activation.

C. PointNet++
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Fig. 4: PointNet++ Architecture



PointNet [5] and PointNet++ [6] differ in their methods
of aggregating point sets. While PointNet uses a single max
pooling operation for the entire set, PointNet++ creates a
hierarchical structure of point groups and gradually abstracts
larger local regions as shown in figure 4. The structure is
composed of several set abstraction levels, each consisting
of three layers: Sampling, Grouping, and PointNet. The
Sampling layer selects a group of points to define the cen-
troids of local regions, while the Grouping layer constructs
local region sets by identifying neighboring points around
the centroids. The PointNet layer employs a mini-PointNet
to encode local region patterns into feature vectors. Non-
uniform point set density presents a significant challenge for
feature learning, but PointNet++ addresses this by extracting
multiple scales of local patterns at each abstraction level
and intelligently combining them based on the local point
densities. After the hierarchical grouping and abstraction
process is completed, the resulting features are fed into fully
connected layers for object classification.

III. EXPERIMENTS

In this section, we provide an explanation of the various
datasets that are utilized to train and test the different
networks that are employed in our project. Following that, we
present a comparison of the outcomes achieved by PointNet,
our own proposed system, and PointNet ++ for the purpose
of 3D object detection from point clouds.

A. Object Detection from ModelNetl0 (complete point
clouds)

PointNet and PointNet++ were tested on the ModelNet10
[4] dataset for shape classification using full point clouds.
The dataset consist of 4,899 mesh files belonging to 10
object categories. The categories include bathtub, bed, chair,
desk, dresser, monitor, nightstand, sofa, table, and toilet.
The dataset were divided into two sets - 3,991 for training
set and 908 for testing set. Farthest point algorithm (FPS)
is used to uniformly sample 1024 points and the points
are normalized. To improve training performance, the point
clouds were augmented by randomly rotating the object and
jittering the position of each point by adding Gaussian noise
with a zero mean and a standard deviation of 0.02. We used
the parameters shown in table II for training.

B. Object Detection from Derived Dataset (complete and
partial point clouds)

In order to conduct our experiments, we also created
a custom dataset by combining the ShapeNet dataset and
the ModelNet10 dataset. We selected 8 categories from the
ShapeNet dataset, including airplane, bench, cabinet, car,
chair, lamp, sofa, and table, as well as 2 categories from
the ModelNet10 dataset, which were bathtub and bed. The
ShapeNet dataset contains both complete and partial point
clouds, and we used 600 complete point clouds from each
category of ShapeNet for training. For the ModelNetl0
dataset, we used 106 point clouds for bathtub and 515 for
bed for training.

The input format for PointNet and PointNet++ is .txt,
but ShapeNet dataset is in .pcd format. To resolve this,
we converted the entire dataset to .txt before feeding it
into PointNet and PointNet++. Prior to conversion, the pcd
files were downsampled using the farthest point algorithm,
mean centered, and normalized. The distribution of dataset
for training and testing is shown in table I. We used the
parameters shown in table II for training.

Dataset Type Complete Point Clouds | Partial Point Clouds
) P Training Testing Testing
ShapeNet All Categories 600 150 150
Bathtub 106 100 None
ModelNet10 Bed 515 100 None

TABLE I: Distribution for training and testing data from
derived dataset

Epoch 15
Batch Size 64
Learning Rate | 0.001
Optimizer Adam
Loss Function | NLLLOSS

TABLE II: Parameters used for training

After training, we tested our models on both complete and
partial point clouds. We tested on all 8 categories from the
ShapeNet dataset, using 150 complete point clouds for each
category. For the ModelNet10 dataset, we used 100 point
clouds for bathtub and 100 for bed for testing on full point
clouds.

Only the 8 categories from ShapeNet had partial point
clouds, so we used only those for testing on partial point
clouds. Each category had 150 partial point clouds.

We then used our proposed system comprising of GRNet
and PointNet for testing on partial point clouds. GRNet had
already been pretrained on this dataset hence we used the pre-
trained weights itself for GRNet architecture. While GRNet
had already been pretrained on this dataset, we needed to
train PointNet and PointNet++ from scratch as they had not
been pre-trained on this dataset. However, GRNet outputs
are stored in 'h5’ file format, requiring us to develop a
separate jupyter notebook. This notebook runs GRNet first,
followed by the implementation of PointNet from scratch.
This allows us to input the output from GRNet in ’h5’
directly to PointNet, resulting in a single pipeline for our
proposed method.

IV. RESULT ANALYSIS

We used two parameters, instance accuracy and class
accuracy, to compare the performance. Instance accuracy
refers to the proportion of correctly classified instances
across the whole dataset. It is calculated by dividing the
number of correctly predicted class labels with the total
number of labels. Class accuracy is calculated by computing
the accuracy of the model for each class separately, and then
taking the mean of those accuracies.



A. Object Detection from ModelNetl0 (complete point
clouds)

The training accuracy of PointNet was found to be
92.24%, whereas PointNet++ achieved a training accuracy
of 92.8%, as shown in figure 5 and figure 6 respectively.
The models were then tested on the test point clouds of
ModelNet10, and the corresponding confusion matrices were
obtained, as shown in figure 7 and figure 8 respectively. The
instance accuracy and class accuracy obtained for PointNet
and PointNet++ are shown in table III.

Object Detection from ModelNet10
PointNet
PointNet++

TABLE III: Accuracy for Object Detection from ModelNet10

Instance Accuracy
92.07%
92.29%

Class Accuracy
91.55%
91.46%

The authors had reported instance accuracies of 90.6% for
PointNet and 92.2% for PointNet++ based on their testing on
the larger ModelNet40 dataset. However, since ModelNet10
is a subset of ModelNet40 [4], the higher testing accuracy
obtained in our experiment could be attributed to the fact that
there were fewer test objects in the ModelNet10 dataset.

Overall, as expected, the results indicate that PointNet++
outperforms PointNet in terms of accuracy.
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Fig. 5: Training Accuracy plot for PointNet on ModelNet10

B. Object Detection from Derived Dataset (complete and
partial point clouds)

The training accuracy of PointNet was found to be
91.63%, whereas PointNet++ achieved a training accuracy
of 93.22%, as shown in figure 9 and figure 10 respectively.

The models were then tested on the test complete point
clouds of the derived dataset, and the corresponding confu-
sion matrices were obtained, as shown in figure 11 and figure
12 respectively. The instance accuracy and class accuracy
obtained for PointNet and PointNet++ are shown in table
Iv.

Although the accuracies were not compared to those
claimed by the author due to different testing datasets,
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Fig. 6: Training Accuracy plot for PointNet++ on Model-

100

Net10
Confusion matrix, without normalization
Confusion matrix
Bathtub | 47 1 0 0 0 0 0 0 1 1
Bed{ 1 o 0 [ 0 0 0 3 [
Chair Q ] o ] o L] o o o
Desk ] o o
w Dresser b . g
¥-1
2
-1 o 0 o
[ -4 Monitor
o ] o
Night_Stand
o ] o
Sofa
o ] o
Table
o ] 0
Toilet

20

& & A
96‘&0 & & S

<

P @ a®
& L_}-e“ ® &
&3
<~

Predicted label

L—lo

Fig. 7: Confusion Matrix for PointNet on ModelNet10

Object Detection from Derived Dataset
(Complete Point Cloud)

Instance Accuracy

Class Accuracy

PointNet

93.18%

93.63%

PointNet++

94.81%

94.83%

TABLE 1IV: Accuracy for object detection
dataset (Complete Point Cloud)

from derived

PointNet++ performed better than PointNet on full point

clouds as expected.

Object Detection from Derived Dataset
(Partial Point Cloud)

Instance Accuracy

Class Accuracy

PointNet 76.91% 76.91%
PointNet++ 68.75% 68.75%
Proposed Method (GRNet + PointNet) 93.83% 93.83%

TABLE V: Accuracy for object detection

dataset (Partial Point Cloud)

from derived
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Fig. 8: Confusion Matrix for PointNet++ on ModelNet10
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Fig. 9: Training Accuracy plot for PointNet on derived
dataset (complete point clouds)

92.5 1

90.0 7

87.57

85.0 1

82.5 1

Training Accuracy

80.0 1

77.5 7

75.0 1

72.5 1

6 8 10 12 14
Epoch

o4
~N
S

Fig. 10: Training Accuracy plot for PointNet++ on derived
dataset (complete point clouds)
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Fig. 11: Confusion Matrix for PointNet on derived dataset
(complete point clouds)
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Fig. 12: Confusion Matrix for PointNet++ on derived dataset
(complete point clouds)

Next, the trained models were tested on partial point
clouds of the same derived dataset, and the corresponding
confusion matrices were obtained, revealing that the instance
accuracy of PointNet dropped to 76.91%, whereas Point-
Net++ dropped to 68.75%. The class accuracies of both
models were also dropped. The confusion matrices obtained
are shown in figure 13 and 14. The accuracy values are shown
in table V.

This observation shows that PointNet++ is more sensitive
to the missing of points than PointNet. This might be due
to the reason that PointNet++ is a hierarchical architecture
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Fig. 13: Confusion Matrix for PointNet on derived dataset(
Partial Point Clouds)
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Fig. 14: Confusion Matrix for PointNet++ on derived dataset
(Partial Point Clouds)

that first partitions the point cloud into smaller sub-clouds,
and then it applies PointNet to each sub-cloud. The output of
PointNet for each sub-cloud is then aggregated to produce a
global feature vector for the entire point cloud. If a point is
missing from a sub-cloud, then PointNet++ will not be able
to learn any features for that sub-cloud. This can lead to a
significant drop in performance.PointNet, on the other hand,
does not partition the point cloud into smaller sub-clouds.
This means that PointNet is less sensitive to the missing of

points. Even if a point is missing, PointNet will still be able
to learn features for the other points in the point cloud. This
can lead to better performance on partial point clouds.
Then our proposed method, comprising of the architecture
of GRNet and PointNet, is tested on the same partial point
clouds and the corresponding confusion matrixes were ob-
tained. As shown in table V, the instance accuracy and class
accuracy increased to 93.8%. This is much better than the
baseline performance of PointNet++ on partial point clouds.
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Fig. 15: Confusion Matrix for the Proposed System on
derived dataset ((Partial Point Clouds)

V. CONCLUSION

In this project, we proposed a system for the classification
of 3D objects that is capable of handling partial point
clouds as inputs. The performance of the proposed system is
evaluated and compared against PointNet++ as our baseline
model. The experimental results indicate that our proposed
model achieves equal or better performance than PointNet++
when partial point clouds are given as inputs.
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