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Abstract

3D scene understanding is a specific computer vision task
aimed at understanding the semantics, physical properties,
functions of objects in a given 3D representation of the
world (like point clouds or meshes). Traditionally, scene
understanding tasks like semantic segmentation have been
limited to a closed set of objects. Recent approaches have
addressed this by co-embedding features of 3D points with
text and image pixels in the CLIP feature space. This makes
them fundamentally open-set. This allows zero-shot scene
understanding.

In our work, we explore extensions to such semantically
rich 3D representations to assist with robot perception and
planning. Towards this, we explore hierarchical represen-
tations of 3D scenes, comprising semantically annotated
point clouds, objects and rooms. By embedding our 3D
scene representation in the CLIP feature space, we further
expand the capability to incorporate additional modalities
like audio, alongside text and image inputs. We perform
qualitative and quantitative evaluations to drive the need
for hierarchical representations and multi modal capabili-
ties to perform scene understanding.

1. Introduction
Robots require a 3D representation of a scene to interact
with the environment. For this to be efficient, such represen-
tations shouldn’t be limited to a fixed set of objects; instead,
it must be open-vocabulary. In today’s robots we provide
geometric commands like “grasp object at Pose X”. In con-
trast, we humans are able to handle higher level understand-
ing like “grasp toy in the living room” which involves un-
derstanding spatial context, object categories, and environ-
mental semantics. To achieve this, robots need higher-level
topological information and reasoning beyond simple geo-
metric positioning. In addition, making these maps multi-
modal would allow us to perform additional tasks such as

object retrieval using modalities like text queries, images,
audio etc. Thus, we need the map representation to be hier-
archical, open-set and multi-modal.

In recent times, foundation models have shown remark-
able capabilities to perform a wide variety of open vocab-
ulary challenges in 2D vision and text. These models are
trained on an internet scale of data to achieve significant
generalization. They don’t need additional re-training or
fine-tuning. For instance, image-only foundation models
like DINO [7] and SAM [5] excel in classification, detec-
tion, and segmentation, while image-language models like
CLIP excel in learning robust text-image representations.
However, unlike images or text, we don’t have such inter-
net scale data to build such foundation models for such 3D
related aspects. Recent approaches have addressed this by
utilizing foundation models of other modalities and map-
ping 3D point representations to their feature spaces. This
has shown great promise to perform tasks like zero-shot seg-
mentation, affordance estimation and 3D object retrieval.

Another aspect is that current works often lack contex-
tual understanding. For example, searching for “a pillow in
the bedroom” highlights pillows in all rooms since there is
no higher level topological understanding. Towards this, we
explore leveraging 3D scene graphs. Using such a graphi-
cal structure helps us encode 3D points, objects, and rooms
as nodes, with edges representing relationships between
points-objects and objects-rooms. This provides various
levels of abstraction.

Additionally, we can lift multiple modalities into a
shared feature space, like in CLIP. By integrating backbones
such as AudioCLIP [3] and ImageBind [1], we can cre-
ate inherently multi-modal maps that support queries across
different modalities—text, images, and audio.

Thus, in this work, we build a simple pipeline to build a
map to help us perform efficient scene understanding. We
make use of foundation models to expand the 3D setting to
an open vocabulary setting, make the maps multi-modal and
use scene graphs to build a hierarchical representation.



Figure 1. Inspired by recent works, we build a simple pipeline where given a set of RGB-D images, we first perform open-vocabulary object
detection and semantic segmentation to obtain 2D object masks. Leveraging the depth information, we extract corresponding 3D point
clouds for each segmented object. We then associate objects across frames and cluster 3D points to create consistent object representations.
We then construct a hierarchical scene graph that captures the spatial and semantic relationships within the 3D map. Multi-modal inference
is performed to test reasoning across text, audio, and image modalities.

2. Relevant Works

The core idea of our project comes from OpenScene [8],
which performs 3D scene understanding tasks using arbi-
trary text queries. They go beyond a closed set of objects
by proposing a Zero-Shot Learning Approach to co-embed
dense features of 3D points with image pixels and text in the
CLIP feature space. However, they produce maps with per-
point feature vectors. Thus, it doesn’t encode inter-object
relationships which is crucial for spatial reasoning. They
also don’t fully explore the multi-modal capabilities beyond
text and image.

ConceptFusion [4] and ConceptGraphs [2] extend the
OpenScene [8] work to build open vocabulary 3D maps
aimed at solving robotics challenges. In ConceptFusion [4],
they build a multi-modal 3D map enabling inference across
additional modalities like Audio, Click etc. It lacks a scene
graph representation to provide further layers of abstrac-
tion. ConceptGraphs [2] advances the approach by con-
structing an object-centric 3D scene graph, encoding inter-
object relationships through LLM-based inference. While
this provides one abstraction layer beyond point-based map-
ping, the method remains limited by its inability to encode
broader hierarchical structures like room-level contexts and
do not fully explore additional multi-modal inferencing.
In HOV-SG [12], they showcase the usage of hierarchical
scene graphs by building additional layers of abstraction
but don’t show additional multi-modal capabilities and the
pipeline is significantly slower compared to the other meth-
ods.

We combine the strengths of all the above to build an

open-vocabulary, multi-modal, hierarchical scene graph for
efficient 3D scene understanding.

3. Method
Inspired by previous works, we build a simple pipeline that
uses a posed set of RGB-D images to build a hierarchical,
semantically rich representation of the environment. Fig-
ure.1 illustrates our approach.

3.1. Open-Vocab Segmentation

We first extract image tags using the Recognize Anything
Model (RAM) [13] for the given series of RGB-D images,
to provide a high-level understanding of the scene. Ground-
ingDINO [6] is then used to detect object positions, and the
Segment Anything Model [5] generates 2D object masks.
Each extracted mask is passed to a visual feature extractor
to obtain a visual descriptor. Here we explored different
variants in literature.

Conceptgraph [2] directly uses OpenCLIP [9] with ViT-
H-14 backbone as a visual image encoder. ConceptFu-
sion [4] uses a weighted sum of the OpenCLIP [9] feature
of the cropped image (fl) and global CLIP feature of the
full image (fg) as a visual descriptor (fi):

fi = wgfg + (1− wg)fl, (1)

HOV-SG [12] uses a weighted sum of the OpenCLIP [9]
features of the cropped image (fl), cropped image without
background (fm), and global CLIP feature of the full image
(fg) as a visual descriptor (fi):

fi = wgfg + (1− wg)(wmfm + (1− wm)fl), (2)



Here, fi is the final integrated feature, fg is the global image
feature, fl is the local (cropped) image feature, and fm is the
modified local feature (with background-removed). Corre-
spondingly, wg is the weight for the global feature and wm

is the weight for the masked local feature.
The global feature weight wg is determined by comput-

ing the cosine similarity between the local feature vector fl
and the global image feature fg and applying softmax to the
similarity values across local features.

wg = softmax
(

fl · fg
||fl|| · ||fg||

)
(3)

After analysis, we adopted HOV-SG’s [12] feature extrac-
tion method, with wm fixed at 0.4418. Quantitative com-
parisons of these visual feature extractors are presented in
section 4.1.

3.2. Object Clustering

At this point, we generate 3D masks for each object de-
tected in an image leveraging depth information. To deter-
mine whether to initialize a new object or merge existing
3D masks, we compute their spatial and visual similarities.

Given a 3D mask i extracted from image It, represented
by point cloud Pt,i and feature vector ft,i, we compare it
against an existing object j described by point cloud Pj and
feature vector fj . We use two similarity measures:

Visual Similarity: Cosine similarity between feature vec-
tors

Visual Similarity =
ft,i · fj

|ft,i| · |fj |
/2 + 1/2 (4)

Spatial Similarity: Fraction of points in Pt,i that have a
close neighbor in Pj

Spatial Similarity =

∣∣∣∣{q ∈ Pt,i : min
p∈Pj

dist(q, p) ≤ δ

}∣∣∣∣
|Pt,i|

(5)
Merging criteria: If the sum of the similarities exceed

a threshold and represents the highest similarity, we merge
the masks. Otherwise, we create a new object. The merged
object’s semantic vector is computed as a moving average of
visual features, enabling the construction of a semantically
rich 3D map similar to ConceptGraphs [2].

3.3. 3D Scene Graph Generation

We segment rooms in the entire object-centric point cloud
of the scene by taking its Bird’s Eye View (BEV) projec-
tion. Unlike previous approaches like HOV-SG [12], we
encountered challenges in segmenting room regions using
watershed algorithms due to the inherent open spatial char-
acteristics of rooms in the HM3D [10] dataset. So, we man-
ually identified the room boundaries in our 3D scene repre-
sentation. Object centroids are then used to systematically
assign objects to their respective segmented rooms.

Figure 2. Scene graph generated for a house space in the HM3D
[10] dataset (id: 00824-Dd4bFSTQ8gi). Green nodes represent
rooms, each connected to the corresponding objects present in that
room via the grey edges. The red node represents the overall build-
ing.

We then construct a graph with three types of nodes:
rooms, objects, and 3D points. The graph’s edges encode
the hierarchical “contained in” relationships, specifically
connecting 3D points to their parent objects and objects to
the rooms they are contained in. Figure. 2 illustrates our
scene graph in the HM3D [10] dataset.

3.4. Audio Query

The features of each object are aligned in the CLIP fea-
ture space. Consequently, the CLIP text and image encoders
can be used for searching objects via text or image queries
in downstream tasks. Additional modalities could be used
for queries, if they can be embedded in the CLIP feature
space. ImageBind [1] proposes an approach to learn a joint
embedding that co-exists with the OpenCLIP [9] feature
space, spanning six different modalities: images, text, au-
dio, depth, thermal, and IMU data. We utilized the audio
encoder from ImageBind [1] to encode audio queries into
the CLIP feature space. Since the joint embedding space of
ImageBind [1] already co-exists with OpenCLIP [9] feature
space, this lets us use the object features calculated from
OpenCLIP [9] without modifications.

3.5. Inference Details

One of the major highlights of the OpenScene [8] work
is the use of arbitrary text queries for scene understand-
ing. We enable the same with our scene graph. Our in-
ference pipeline uses a Large Language Model (LLM) to
transform natural language queries into structured scene de-
tails. Specifically, we use the Qwen2.5-72B-Instruct model
via the HuggingChat API to parse queries and extract se-
mantically meaningful room and object details in [‘room’,
‘object’] format. For example, a query like “A lamp in the
living room” is parsed to [“living room”, “lamp”], precisely
extracting the specific object and location. More open-
ended queries such as “all chairs” result in [None, “chairs”],



triggering a comprehensive search across all rooms. We
match the CLIP embeddings of these parsed query compo-
nents against the scene graph’s node features to first identify
the room level, and then the object in that particular room.

4. Evaluations
4.1. 3D Semantic Segmentation

To assess the zero-shot semantic understanding capabilities,
we evaluate the performance on the Replica [11] dataset.
This allows us to compare the feature extraction methods of
ConceptGraphs [2], ConceptFusion [4], and HOV-SG [12].

Given a predefined set of class names, the semantic la-
bel for each point is determined by computing the similarity
between the fused semantic feature of its associated object
node and the CLIP text embeddings of the phrase “an im-
age of {class}.” following the approach in ConceptGraphs
[2]. Each point is assigned the label of the class with the
highest similarity. For evaluation, we perform a bidirec-
tional nearest-neighbor point association between predicted
and ground truth point clouds (GT → Prediction and Predic-
tion → GT). We report two primary semantic segmentation
metrics, class mean recall (mAcc) and frequency weighted
mean intersection over union (F-mIoU) in Table 1

From Table 1, we observe that HOV-SG [12] achieves
comparable mAcc to ConceptGraphs [2] while outperform-
ing both methods in F-mIoU, indicating better overall seg-
mentation quality. The performance improvement of HOV-
SG [12] can be attributed to the usage of local features,
which are a weighted sum of the cropped image and masked
cropped image. The masked cropped image reduces back-
ground interference, and hence minimizes the influence of
other objects on the target object. The lower performance
of the ConceptFusion [4] method might be due to the dif-
ferences in the overall pipeline. The authors of Concept-
Fusion [4] used SAM [5] without bounding boxes detected
by a foundational model like GroundingDINO [6]. Since
we used foundational models for object detection and used
those bounding boxes as input to SAM [5], we obtained a
2D mask representing the whole object. Fusing the global
feature with this might have caused an interference from the
background objects onto the 2D masks, affecting the feature
space of the 2D masks.

4.2. Object retrieval via text with scene graph and
without scene graphs

3D scene graphs help represent the hierarchical topologi-
cal information of a 3D map. To evaluate the effectiveness,
we conducted an experiment based on object retrieval suc-
cess rate as shown in Table 2. The Top-k metric indicates
whether the expected object was among the first k matches
predicted by the method. A search is counted as successful
if at least 20% of the predicted object’s points have class

Method Scene ID mAcc [%] F-mIoU [%]
room0 36.21 37.39
room1 47.51 44.11

HOV-SG room2 27.19 28.63
office0 33.81 33.68
office1 33.06 21.55
office2 36.81 56.45
Overall 38.24 36.13
room0 41.49 41.87
room1 40.47 37.59

ConceptGraphs room2 29.30 36.40
office0 32.51 28.92
office1 33.19 18.29
office2 33.25 47.01
Overall 38.66 34.54
room0 39.65 42.02
room1 40.21 36.75

ConceptFusion room2 25.82 36.17
office0 32.60 28.95
office1 29.00 18.29
office2 32.49 47.09
Overall 36.46 34.35

Table 1. Open-vocabulary semantic segmentation experiments on
the Replica [11] dataset.

labels that match the expected class label.
Due to compute and memory constraints, we conducted

this experiment on a subset of the Replica [11] dataset in-
stead of the HM3D [10] dataset. We selected room 0, room
1, room 2, and office 2 and used them as different rooms of a
house since they had distinct semantic characteristics. After
extracting ground truth labels for each room, we removed
non-relevant objects such as walls, floors and ceilings. This
process yielded a total of 81 object instances. We used GPT-
4o to generate queries in the form [“A/an {object name} in
{room name}”, [{room name, object name}]. The first in-
dex of the output from GPT-4o served as the query for eval-
uation, and the second index provided the expected room
name and expected object name. A total of 81 such queries
were generated for the analysis.

Metric Top-1 Top-2 Top-3
With Scene Graph 0.6049 0.6296 0.6914

Without Scene Graph 0.3086 0.4444 0.5556

Table 2. Comparison of query success rates with and without the
use of Scene Graph structure. The Top-k metric indicates whether
the expected object was among the first k matches predicted by the
method.

As shown in Table 2, the scene graph representation out-
performs the no-scene-graph representation across all three



metrics. The reason is that the 3D scene graph representa-
tion allows us to find the best-matched room first and then
search for all objects inside that room. The chance of find-
ing the correct object is high. Note that the open vocabu-
lary aspect of our method is restricting the maximum suc-
cess rate to 0.6914, as some classes were undetected by the
foundational models and thus were not considered for the
CLIP feature calculation. In the scenarios where no scene
graphs are used, we search through all objects in all rooms,
and there could be chances we might obtain another similar
object in a different room which might have a higher cosine
similarity with the query.

Figure 3. Two examples from the HM3D [10] dataset comparing
the method without and with scene graph.

4.3. Qualitative Analysis

We present qualitative results to visually demonstrate the
method’s capabilities:

1. Scene Graph: Figure 3 shows two examples from the
HM3D dataset (scene id: 00824-Dd4bFSTQ8gi) com-
paring the method without scene graph and with scene
graph. Using Scene graphs helps localize the objects in
the right location since it provides a higher-level topo-
logical understanding.

2. We show the method’s inference results across different
input modalities - text, image and audio:
(a) Text Queries: Fig. 4a shows the method’s seman-

tic understanding capabilities through diverse text
queries representing affordances, materials, objects,
and rooms.

(b) Image Queries: Fig. 4b shows how we could use
images to perform object retrieval. For instance,
using images like an orange towel helps identify
the towel in the washroom. Additional examples
involving the images of a bathtub and plants show-
case its performance for image based inference.

(c) Audio Queries: Fig. 4c depicts the scene under-
standing when we use an audio clipping of the
sound of the toilet being flushed, snoring and an
alarm clock. It neatly identifies the corresponding
objects like toilet and beds.

5. Summary
We have shown a simple pipeline for building hierarchi-
cal, open-set, multi-modal map representations, drawing in-
spiration from recent cool works. These representations
show great potential in scene understanding for robots. A
promising future direction is extending this approach to
SLAM systems with back end optimization, enabling real-
time mapping systems that are open-set and hierarchical.

However we also acknowledge that further work needs
to be done in our work for 2 main areas: robust room seg-
mentation and quantitative evaluations for audio and image
based queries.
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