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Abstract—Optical flow estimation has found applications in
various computer vision applications like object detection and
tracking, movement detection, robot navigation and visual odom-
etry. Two major approaches for estimating optical flow are
classical methods and deep learning-based methods. Classi-
cal methods, such as the Lucas-Kanade, Horn-Schunck, and
Farneback techniques, rely on well-established mathematical
principles to compute flow estimates. Lucas-Kanade and Horn-
Schunk methods calculate sparse optical flow based on the fea-
tures and Franeback technique estimates dense optical flow. Deep
learning methods, such as FlowNet and FlowNet 2.0, leverage
the power of artificial neural networks to generate dense optical
flow information from raw image data. This paper presents a
comprehensive study comparing the performance of both the
classical and deep learning approaches for estimating dense
optical flow. We used the Farneback method as a representative
of classical techniques and FlowNet 2.0 as a representative of
deep learning-based methods. Our experimental results highlight
performance comparison of both the methods on a defined dataset
using appropriate metrics - L1 error, Average end point error
and Average angular error. The results show that FlowNet 2.0
provides significantly better results than Farneback Algorithm.

Index Terms—Optical Flow, Computer Vision, FlowNet, Lucas-
Kanade, Farneback

I. INTRODUCTION

Optical flow estimation is a fundamental problem in com-
puter vision, as it enables the extraction of motion information
from video sequences. It has numerous applications in areas
such as object tracking, action recognition, video stabiliza-
tion, autonomous navigation, and human-computer interaction.
Given the critical importance of optical flow estimation, signif-
icant research efforts have been devoted to developing accurate
and efficient methods for estimating optical flow. There are
two main types of optical flow: sparse optical flow and dense
optical flow.

Sparse optical flow focuses on a limited number of feature
points within an image sequence. It involves tracking a select
set of points, usually high-contrast or distinctive features, such
as corners or edges. The main advantage of sparse optical flow
is its computational efficiency, as it requires less processing
power and time compared to dense optical flow, but it does
not provide as much information about motion of the entire
image. Popular algorithms for estimating sparse optical flow
include Lucas-Kanade and Shi-Tomasi methods.

Dense optical flow computes motion vectors for every pixel
in the image sequence, providing a more comprehensive rep-
resentation of the apparent motion in the scene. This approach

offers a detailed understanding of the motion, but at the cost
of increased computational complexity and processing time.
Popular algorithms for estimating dense optical flow include
classical methods like Horn-Schunck, Farnebäck, and deep
learning-based methods like FlowNet and RAFT.

Optical flow estimation techniques can be categorized into
two main approaches: classical methods and deep learning-
based methods. Classical methods such as Lucas-Kanade,
Horn-Schunck, and Farneback techniques, are built upon well-
established mathematical principles and optimization tech-
niques. These methods typically rely on assumptions such as
unvarying brightness, spatial smoothness, and temporal coher-
ence to compute flow estimates. Although classical methods
have demonstrated their effectiveness in many applications,
they may encounter difficulties in handling complex and non-
linear motion patterns and large displacements.

Deep learning-based methods, on the other hand, leverage
the power of artificial neural networks to learn features, pat-
terns and relationship between these features and patterns from
raw image data to optical flow information. These methods,
such as FlowNet, FlowNet 2.0 and RAFT [1], have emerged
as promising alternatives to classical techniques, offering im-
proved accuracy and robustness in challenging conditions.

We will be focusing on dense optical flow estimation
techniques, which provide motion information for all points
in the image and can result in a more complete represen-
tation of the overall motion in the scene. In this paper, we
present a comprehensive study comparing the performance
of classical and deep learning approaches in dense optical
flow estimation. We implement the Farneback method as a
representative of classical techniques and FlowNet 2.0 as a
representative of deep learning-based methods. We use the
MPI Sintel flow dataset [2] to generate optical flow outputs
using both techniques and evaluate their performance using
appropriate metrics such as L1 error, Average endpoint er-
ror, and Average Angular error. Additionally, we conduct an
experiment to track facial motion using optical flow, and we
compare the performance of Farneback and FlowNet 2.0 using
a suitable metric, the percentage of bounding box overlap. The
illustration of project scope is shown in Figure 1.

II. RELATED WORK

Optical flow estimation is a constantly evolving field. There
are various papers that have made substantial contributions in



Fig. 1: An illustration of the proposed scope of the project. The frames are given as input for FlowNet 2.0 and Farneback
algorithm. The optical flow outputs are used for performance comparison using metrics such as L1 error, Average End Point
Error and Average Angular Error. The optical flow outputs are used for tracking face and performance will be compared using
the percent overlap of the bounding box predicted by optical flow to that predicted Harr-Cascade classifier method.

the Optical Flow concepts. Some of the research works that
have highly influenced our project are: Farneback Algorithm
[3], FlowNet [4] and FlowNet 2.0 [5]

The Farneback algorithm uses a multi-scale approach to
estimate the optical flow at different levels of resolution, or
scales, by constructing an image pyramid where each level
has a lower resolution than the previous level. At each level
of the pyramid, the algorithm computes the optical flow field
by tracking the motion of each pixel between two consecutive
frames. This is achieved by using a polynomial expansion
to approximate the image intensity around each pixel and
then solving an equation to estimate the displacement of the
pixel between the two frames. Once the optical flow fields are
computed at each level of the pyramid, they are combined to
create the final optical flow field by taking into account the
motion estimated at each level of the pyramid. The result is a
dense optical flow field that describes the apparent motion of
objects in the image.

FlowNet is a convolutional neural network (CNN) model
designed to estimate optical flow. The authors presented two
architectures for optical flow estimation, FlowNetSimple and
FlowNetCorr. Both architectures, as shown in figure 2, are end-
to-end learning methods, meaning that they learn to estimate
optical flow directly from images, without the need for hand-
crafted features. FlowNetSimple is a simple architecture that
stacks two consecutive input images together and passes them
through a convolutional neural network. The network learns
to extract features from the images and use these features
to estimate the optical flow. FlowNetCorr is a more complex
architecture that first generates separate representations of the

two input images. These representations are then merged in
a ”correlation layer” to learn a higher-level representation.
The network then uses this higher-level representation to
estimate the optical flow. The correlation layer is utilized to
make comparisons between two feature maps by multiplying
patches. To be more precise, it takes two feature maps, f1
and f2, each with dimensions w, h, and c, representing width,
height, and number of channels. The correlation between two
patches centered at x1 in the first map and x2 in the second
map is defined as shown in equation 1.

c (x1,x2) =
∑

o∈[−k,k]×[−k,k]

⟨f1 (x1 + o) , f2 (x2 + o)⟩ (1)

where, the center of the first and second maps are denoted
as x1 and x2, respectively, with a square patch of size K =
2k+1 centered around them. The authors limit the maximum
displacement for computation purposes. Specifically, for each
x1 location, the range of x2 is restricted by computing
correlations in a neighborhood of size D = 2d+1, where d
is the maximum displacement specified. The resulting output
has dimensions (w*h*D²). The authors then concatenate the
feature map extracted from f1 using a convolution layer with
the output.

Both FlowNetSimple and FlowNetCorr have refinement
steps to increase resolution during upsampling. This is done by
upsampling the coarse flow prediction and then concatenating
it with the corresponding feature maps. The resulting feature
maps are then passed through another convolutional layer to
refine the flow prediction.



Fig. 2: Diagram of the complete architecture of FlowNet 2.0. For computing large displacement optical flow, multiple FlowNets
are combined, with concatenated inputs shown within braces. The brightness error is determined as the difference between
the first and second images, warped using the estimated flow. To effectively handle small displacements, smaller strides and
convolutions between upconvolutions are added to the FlowNetS architecture. The final estimate is obtained using a small
fusion network.

Fig. 3: The two FlowNet network architectures: FlowNetSim-
ple on top and FlowNetCorr on bottom.

FlowNet 2.0 is an improved version of FlowNet 1.0. The
main architecture of FlowNet 2.0 is shown in figure 2, and
the paper makes four main contributions: (1) the schedule
of presenting data during training is important, (2) a stacked
architecture is proposed, (3) a sub-network specializing in
small motions is introduced, and (4) a fusion architecture is
proposed. The model uses a two-stage training process, where
in the first stage, it is trained on a simpler dataset, such as
FlyingChairs, to learn basic features of optical flow estimation.
In the second stage, the model is fine-tuned on a more complex
dataset, such as Sintel, to learn more sophisticated features.
FlowNet 2.0 also uses an iterative architecture of multiple
networks, where the output of one network is used as the input
to the next network. This enables the model to learn more
complex relationships between the two input images, and to
refine the estimated optical flow field with each iteration. To

improve the accuracy of the model for small displacements,
FlowNet 2.0 uses various techniques. Firstly, it modifies the
network architecture to include more layers that can capture
fine-grained details in the images. Secondly, it fuses outputs
from networks trained on different displacement datasets to
obtain a more robust and accurate estimation of optical flow.

In our project, we have used this Haar-Cascade pre-trained
classifier [6] to detect a face in a video frame.This method
uses a cascade of boosted Haar-like features to detect objects
in images. The two main steps of their methods are: feature
selection and cascaded classification. In feature selection, they
use AdaBoost to select the most effective Haar-like features
for detecting the target object. In cascaded classification, a
series of classifiers detect different parts of the object, with
classifiers that reject non-target objects placed at the beginning
of the cascade. The paper shows that their method could detect
faces in real time with high accuracy. It is one of the simplest,
most efficient, and most effective algorithms for detecting a
wide variety of objects.

III. EXPERIMENTS

In this section, we provide an explanation of the various
experiments we have done in our project to compare the
performance of Farneback and FlowNet 2.0.

A. Performance on MPI Sintel Dataset

The MPI Sintel dataset [2] is a large, high-quality dataset of
rendered artificial scenes with realistic image properties. It is
derived from the open-source 3D animated short film Sintel,
and it contains two versions: the Final version, which includes
motion blur and atmospheric effects, and the Clean version,
which does not. Sintel is one of largest dataset (1,041 images



from 23 categories) available for optical flow evaluation, and it
provides dense ground truth for small and large displacement
magnitudes. The dataset is challenging due to its complex
motion patterns, occlusions and different range of displace-
ments which make it an ideal benchmark for evaluating the
performance of optical flow algorithms. We used a derived
dataset for training FlowNet 2.0. The distribution of data used
for training, validation and testing are

• Training data (Sintel Final) : 23 categories, total : 744
• Validation data (Sintel Clean) : 23 categories, total : 744
• Testing data (Sintel Final) : 23 categories, total : 320
The training is completely done on Google Colab. The

model was trained for 60 epochs to not exceed the user
limitations of Google Colab. The parameters used for training
are listed in table I. The model considers Average End Point
Error (EPE) as loss function. Validation on the dataset was
done during every 5 epochs. The results for L1 error and
Average End Point Error for training and validation are shown
the figure 4 and 5 . As shown, the losses were not reducing
significantly after 60 epochs. Hence we decided to use the
pre-trained weights provided by the authors of FlowNet 2.0
for our further experiment. The parmeters used for training by
by the authors of FlowNet 2.0 are listed in table I.

Model Trained From Scratch Pre-trained model
No of epochs: 60 10000

Loss : Average End Point Error
Batch Size: 8
Optimizer: Adam

TABLE I: Parameters used for training

Fig. 4: Training loss

The optical flows on testing data of derived dataset were
generated using the test dataset by both Farneback algorithm
and FlowNet 2.0 method. To compare the performance of the
optical flow outputs from Farneback and FlowNet 2.0 we used
the metrics : L1 error, Average End Point Error (EPE), Average
Angular Error (AAE). L1 error is the average of the absolute
differences between the estimated and ground truth optical
flow vectors at each pixel. Average End Point Error is the

Fig. 5: Validation loss

average of the Euclidean distances between the estimated and
the ground truth optical flow at each pixel. Average Angular
Error is the average of the angles between the estimated and
the ground truth optical flow at each pixel.

B. Implementation

The input video that we use to generate the optical flow
for, is first processed before giving as an input to FlowNet 2.0
and the Farneback Algorithm. We apply a Gaussian Blur so
that the background noise due to low light is eliminated. This
prevents any possibilities of erroneous results in the obtained
optical flow. After preprocessing, the video is given as an input
to each of the algorithms.

1) Deep Learning Optical Flow Processing: The optical
flow field is generated for all frames in the input video. The
model then returns a series of (.flo) files, that holds the optical
flow data between each of the successive frames. These flow
files are represented as a grid of arrows which show the change
in direction and magnitude as seen in Figure 6. This gives us
an easy visual representation on how to understand the flow
field. This grid is then overlaid on the original video so that
the change in the optical flow with respect to the video can
be easily visualized.

Fig. 6: Image showing the optical flow field represented as a
grid of arrows

2) Classical Computer Vision Flow Processing: The optical
flow field is generated for all the frames in the input video
or live stream from webcam. The flow obtained from the



Farneback algorithm is then represented as a grid of arrows
the same way as discussed previously. This flow is appended
to the frame obtained from the webcam or video.

3) Tracking Face: In the first frame of the video, the face
is detected using the Haar-Cascade pre-trained classifier, and
a bounding box around the detected face is displayed. This
bounding box is then considered as our Region of Interest
(ROI) where all calculations and estimations are performed.
The mean flow inside the ROI for every frame is calculated,
and the ROI coordinates are updated based on this mean
flow. This results in the eventual tracking of the object over
successive frames, in this case, the detected face. Based
on the optical flow field, the ROI changes, and tracks the
movement of the face.

In the ROI, the velocity of the movement and the direction
of movement sideways of the object is also calculated based
on the mean flow and is displayed on the left corner of the
image. Figure 7 shows the face being tracked and the velocity
and movement direction on the output image.

Fig. 7: Screenshot showing the face being tracked, along with
the velocity and movement direction

Another addition that was implemented was the addition of
a User-Interface (UI) to make the output window more user
friendly. A button ”Reset ROI” and a step size trackbar was
added. Since the bounding box tracks the face only on the
basis of the optical flow, it is not always accurate and due
to this inaccuracy, the box loses track of the face. When the
button is clicked, the optical flow tracked box resets to the
detected face, and thus completely overlaps with the ground
truth. The trackbar which varies the step size can be varied
from 10 to 64. This step size changes the number of flow
points plotted on the output window. When the step size is
10, many more flow points are visualized then when the step
size is 64. A screenshot of this UI is shown in Figure 8. This
increases the amount of data used to calculate the mean flow
and leads to better tracking, however, the FPS decreases due
to the increased number of computations. By default, the step
size is set to 16.

Fig. 8: Screenshot of the UI showing the Reset ROI button
and the trackbar

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the results of the performance
comparison between the optical flows and face tracking im-
plemetation.

A. Performance on MPI Sintel Dataset

A few examples from the MPI Sintel test dataset with
its ground truth and optical flow outputs from Farneback
and FlowNet 2.0 is provided in figure 9. As expected, the
FlowNet 2.0 algorithm is giving better results compared to
the Farneback algorithm. There are white patches in the optical
flow outputs from Farneback. To evaluate the performance of
optical flow, we used the metrics L1 error, Average End Point
Error, and Average Angular Error. The values are listed in the
table III. The results from FlowNet 2.0 is significantly better
compared to Farneback Algorithm.

The better performance of FlowNet 2.0 over Farneback
might be due to a number of reasons . In regions with constant
intensity, the Farneback algorithm may not be able to detect
the variation in color and, therefore, fail to estimate the optical
flow correctly. Occlusions can disrupt the continuity of the
flow and make it difficult for the Farneback algorithm to
estimate the flow vectors correctly. Large motion can also
disrupt the continuity of the flow and make it difficult for the
algorithm to estimate the flow vectors correctly. In low-texture
regions, there is not enough information for the algorithm to
accurately estimate the optical flow. This can result in white
patches in the output. FlowNet 2.0 is trained on variety of
datasets to perform better in all of the cases.

B. Implementation

Apart from the bounding box which is the ROI, there is
another bounding box also present, which uses the Haar-
Cascade classifier to detect a face in every frame. This box is
considered as the ground truth, as it always tracks the face in
every frame. Ideally, both these boxes have to overlap, which
proves that the optical flow based tracking is always correct.
However, since this is not possible, a performance metric is
used.

The intersection performance metric is used to calculate the
accuracy of optical flow based face tracking. The percentage



Fig. 9: Examples of flow fields from different methods estimated on MPI-Sintel. FlowNet
2.0 performs much better than Farneback and is able to extract fine details.

Frame Number Farneback (% overlap) FlowNet 2 (% overlap)
0 100% 100%

100 96.05% 95.39%
200 97.31% 94.07%
300 89.11% 99.33%
400 75.77% 93.01%
500 82.24% 89.15%
600 69.67% 100%
700 74.19% 99.33%
800 83.42% 98.70%
900 93.28% 95.99%

1000 90.47% 95.85%

TABLE II: Comparison of percentage overlap of Farneback
and FlowNet 2 for the first 1000 frames

Fig. 10: Comparison of (i) Classical Computer Vision Overlap
Percentage and (ii) Deep Learning Overlap Percentage

overlap between the two bounding boxes is calculated and
displayed on the output window. Figure 10 shows the face
being tracked and the overlap percentage for the same frame
in both approaches. It can be seen that the deep learning

based optical flow tracking is much more accurate and has
a high intersection/overlap percentage, which can also be seen
in Table II.

V. SUMMARY

In this project, we were able to perform a comprehensive
analysis of Optical Flow using Classical Computer Vision
with the Farneback Algorithm and Deep Learning Model
with FlowNet 2.0. Both algorithms were compared using a
variety of performance metrics - L1 error, Average Endpoint
Error and Average Angular Error. Additionally we were
able to visualize the flows obtained from both approaches
as a grid of arrows, and performed face tracking using a
Haar-Cascade Classifier. Additionally, the optical flow field
was analysed; the velocity of the movement, and sideways
direction of movement was also calculated. A user-friendly
UI was created for the Classical Computer Vision approach,
to visualize the optical flow with different step sizes, with the
ability to reset the ROI at the click of a button.

The optical flow field generated by FlowNet 2.0 performed
much better at tracking over the flow generated by Farneback
in all the tests across all performance metrics. Due to lack of
texture dependencies, large displacement, dependency on pixel
color values, the performance of the optical flow for tracking
by the Farneback algorithm was subpar. Since FlowNet 2.0 has
been trained on various datasets covering multiple scenarios
with varying picture characteristics, it performs much better
across all performance metrics.



Category L1 Error EPE AAE
Farneback FlowNet 2.0 Farneback FlowNet 2.0 Farneback FlowNet 2.0

Alley 1 0.6416 0.0924 23.6546 0.1476 31.0392 2.2396
Alley 2 1.5901 0.1524 56.9127 0.2445 27.4461 2.2787
Ambush 2 38.9716 1.2146 882.3624 2.2024 78.4506 2.6711
Ambush 4 14.7739 1.5013 426.9432 2.5994 74.6500 3.4777
Ambush 5 26.4725 2.3284 689.7455 3.8740 75.3315 4.3254
Ambush 6 34.6250 2.0365 865.6840 3.3719 73.8862 5.1622
Ambush 7 5.3257 1.7847 164.3199 2.9512 73.0746 5.0952
Bamboo 1 0.5527 1.6738 24.9192 2.7517 27.2078 5.2876
Bamboo 2 2.8247 1.5164 117.2136 2.4906 61.4336 5.6894
Bandage 1 0.5896 1.4095 23.6486 2.3147 36.0795 6.2677
Bandage 2 0.2237 1.3756 8.7772 2.2529 34.6466 6.1733
Cave 2 14.0825 1.3351 336.8272 2.1813 49.0335 6.0147
Cave 4 10.7466 1.4874 300.5732 2.4141 59.0035 6.4774
Market 2 0.1977 1.4268 9.4361 2.3152 53.6362 7.0750
Market 5 13.9899 1.4077 386.5746 2.2801 71.4026 7.0595
Market 6 5.7798 1.4447 186.9603 2.3299 61.3453 7.0261
Mountain 1 1.4578 1.3892 44.0406 2.2385 46.2691 6.8608
Shaman 2 0.1783 1.3163 6.2656 2.1207 27.7953 6.7706
Shaman 3 1.8477 1.2461 45.7262 2.0076 62.2367 6.7328
Sleeping 1 0.9926 1.1840 29.7839 1.9071 38.7935 6.5560
Sleeping 2 0.5207 1.1261 18.2515 1.8139 24.3843 6.3979
Temple 2 1.3428 1.0776 45.7841 1.7365 32.9923 6.2335
Temple 3 37.5473 1.1768 905.8085 1.8953 79.8069 6.1366
Mean 9.3598 1.3349 243.4875 2.1931 52.1715 5.5656

TABLE III: Performance comparison on public benchmarks. AEE: Average Endpoint Error. AAE: Average Angular Error
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