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Abstract— Understanding the state of the robot is a crucial
element for autonomous navigation. Several papers investigate
SLAM (Simultaneous Localization and Mapping) pipelines in
either outdoor or interior contexts, or both. However, only a few
works have looked at the difficulties that might develop when
moving from an outdoor to an indoor setting or vice versa. In
this project, we have explored some frequent problems faced
when performing global state estimation during such environ-
ment transitions. This project used all three key sensors covered
in the Robotics Sensing and Navigation course: Camera, IMU,
and RTK-GPS.

I. INTRODUCTION

We expect robots to have the ability to make decisions and
act on their own, and this fictitious (no more!) fantasy has
never been more closer to reality than in the previous decade.
Autonomous navigation can be understood in a general sense
using the five-step pathway, also known as the Sense-Think-
Act (SPA) paradigm [1], which is:

• Vehicle interacts with the physical world.
• Sense - Collects data using multiple sensors.
• Perceive - Interprets this data to build the map of the

environment, understands where the obstacles are, and
determines its location with respect to landmarks.

• Plan - Plans the optimal path from the current location
to the desired point.

• Act - Acts according to its decision and hence causes
an interaction.

According to this loop, the robot needs to determine its
state, which is a set of quantities such as position, orientation,
and velocity, that, if known, fully describe that robot’s motion
over time.

We can use sensors like Cameras, IMUs, GPS, and Li-
DARs (Light Detection and Ranging) to understand the state
of the robot. However, using these sensors separately makes
it difficult to achieve robust state estimation in long-term
navigation. Because many of these sensors have complemen-
tary qualities, sensor fusion has been the go-to strategy in
recent years because it allows us to obtain improved accuracy
despite the fact that some of the sensors have scenario-
specific drawbacks (like the multipath error in GPS when
moving in an urban canyon scenario).

Visual-Inertial Navigation algorithms, which combine the
measurements provided by cameras and IMUs, have been
shown to have high accuracy and robustness. The most
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popular ones in the last 3 years have been ORB-SLAM
3 [2], BASALT [3], VINS-Fusion [4], and Kimera [5].
Although the visual place recognition modules perform loop
closure in some of the Visual Inertial Odometry pipelines,
they still have the issue of significant drift in long-term
trajectories. GPS has been known to provide globally drift-
free localization. Despite it being accompanied by noise,
there have been attempts to fuse the GPS measurements
with the VINS algorithm estimates to achieve a drift-free
and globally aware solution. We have had multiple methods
display their prowess in outdoor settings. However, relatively
few approaches [6], [7], [8], have attempted to address the
issues that arise when there is a brief GPS loss in complicated
contexts.

In this study, our aim has been to understand the chal-
lenges usually faced when using a sensor suite with a
camera, IMU and GPS in a complex environment involving
urban canyons, indoor environment, and indoor-outdoor tran-
sitions.To analyze VINS algorithms separately and observe
their advantages and challenges in long-term navigation, we
performed experiments using ORB SLAM 3 [2] in carefully
selected environments across our university that pushed each
of the sensors to their failure cases. To assess global location
accuracy, we collected data using an RTK GPS and the
NTRIP (Network Transport of RTCM via Internet Protocol)
technology, which enabled us to connect to a remote base
station and removed the hindrance of having to set up our
own base station. To test the algorithms that do tightly
coupled GPS-Camera-IMU fusion for state estimation, we
used the current state of the art, GVINS [6]. GVINS is
an optimization-based method that fuses visual-inertial data
with multi-constellation GNSS raw measurements. In this
work, the authors have been able to provide a 6-DOF global
drift-free estimation considering situations where GNSS sig-
nals could be intercepted or totally unavailable. We tested
this algorithm on the complex environment dataset released
by the Hong Kong University of Science and Technology -
Aerial Robotics Group [9].

II. EXPERIMENTAL SETUP

We conducted experiments on both our own hardware
setup and a complex environment dataset released by
HKUST. Our primary aim was to conduct experiments on
GVINS [6] for both the dataset and the live data from our
hardware setup. Our attempts to conduct experiments in a



tightly coupled manner using this method failed due to an
issue in implementing their feature extractor module. Our
attempts to contact the authors weren’t successful too. So,
we collected data using our hardware setup in an uncoupled
manner to investigate the challenges in VINS methods and
GPS separately and analyze the need for sensor fusion, which
for our sensor suite, is a tightly coupled global estimation
module.

A. Dataset

The popular datasets used for SLAM, such as EuRoC
[10] and KITTI [11], involved specific scenarios - either
indoors or outdoors. There were very few publicly available
datasets that involved a complex environment that involved
indoor-outdoor transitions. We implemented GVINS on the
complex environment dataset [9] released by HKUST. This
dataset covers different scenarios, such as areas with dim or
bright light, indoor-outdoor transitions, and areas with GPS
inaccessibility.

B. Hardware Setup

We conducted experiments on our Hardware setup to
analyze live data. To understand the challenges, we divided
our experiments into four categories:

• Open Outdoor- A non-covered area with better sky
exposure to have the best GPS measurements.
Location: Columbus Garage Rooftop (Path as shown in
Fig. 2)

• Urban Outdoor- A partially-open area covered by
buildings to observe some common issues in GPS and
drift in VINS estimation.
Location: A selected region around the campus (Path as
shown in Fig. 3)

• Semi-Indoor- Path involving transitions from outside
to inside a building. This is our complex environment
involving lighting changes, accumulated inertial errors,
and GPS inaccuracies.
Location: Path from Snell Library to Ruggles station
via ISEC building. (Path as shown in Fig. 4)

• Pure Indoor- Path involving complete GPS failure.
Location: Underground tunnels connecting different
buildings (Starting from Curry Student Center and going
back to the same place.Path as shown in Fig. 5)

These ensured that we were able to consider scenarios
where one of the sensors (GPS/IMU/Camera) would fail and
the other would be able to complement this failure and would
provide support in the scenario of fused state estimation.

As shown in Fig. 1, our hardware setup contains a ZED
stereo camera, an inbuilt synchronized IMU, and an u-blox
ZED-F9P GNSS receiver. Images are received at a frame rate
of 15 Hz, while RTK-GPS signals are received at a rate of
10 Hz. IMU measurements are streamed with a frequency
of 200 Hz. The ZED-F9P has an internal RTK engine, and
the corrections for the receiver were obtained from the base
station in Clarksburg, Massachusetts, through the internet
(NTRIP Technology), via rtk2go.com. Using NTRIP, we

could find accurate fix solutions much more quickly without
setting up our base station.

Fig. 1. Our Real-world experiment setup consists of a ZED stereo
camera, an inbuilt synchronized IMU, and an u-blox ZED-F9P GNSS
receiver. The corrections from the remote base station for the GNSS
receiver were obtained through the internet (NTRIP Technology).
NTRIP consists of two main subsystems: NTRIP Caster at the server
side & NTRIP Client at the receiver side. The task of the NTRIP caster
is to receive the data stream from the base station and rebroadcast it to
the NTRIP Client over a specified TCP (Transmission Control Protocol)
port. This setup helped to eliminate the need to set up our own base
station.

So far, ORB SLAM3 has the best accuracy in terms of
VINS algorithms [12]. To evaluate local state estimations,
we utilized trajectory data from running ORB SLAM3 with
GPS data obtained concurrently. This was done to observe
the situations where VINS is more beneficial than GPS and
vice versa.

III. ANALYSIS

A. Visualization

The trajectories of experiments were visualized in Google
Maps using a MATLAB function ”paby/plot google map”
[13]. The latitude & longitude obtained from the GNSS
receiver can be plotted directly using the function since they
are represented in the global frame. However, the trajectory
from VINS must be pre-processed before plotting since it
is represented in a local frame. The starting point of the
VINS trajectory must first be changed to match that of the
RTK GPS trajectory so that both tracks begin at the same
place. Then the heading is aligned so that the first straight
line from RTK GPS and VINS trajectory are oriented in
the same direction. The aligned coordinates of the VINS
trajectory were converted to UTM coordinates and then to
latitude & longitude for visualizing the trajectory in Google
Maps.

B. Real-World Experiment

1) Open Outdoor: This experiment is conducted at the
top of the Columbus Garage, an outdoor environment in an
”L” shaped route. This is a typical outdoor environment with
an open area. In this experiment, we attempted to capture
a scenario where we have a fix state in the RTK GPS
permanently to enable easy qualitative and visual evaluation
of the GPS trajectory. From Fig. 2, we can observe a
significant drift in the VINS trajectory (red line) compared to



the GPS trajectory (blue line). This RTK GPS trajectory can
be taken as the ground truth. This was an expected result.
VINS data is produced in a Local reference frame, and the
origin is when the VINS data begins the estimation. That’s
why trajectory evolves according to that starting point, and
drift grows at each pose (as seen in Fig. 2. Up to a certain
point, RTK GPS and VINS are aligned in a smooth manner.
After some time, since the drift error gets more prominent
at each pose, the VINS trajectory starts to move away from
the RTK trajectory).

Fig. 2. The trajectory of RTK GPS and VINS in the Open Outdoor
experiment

2) Urban Outdoor: The path of this experiment started
in front of Hayden hall, then towards Ruggles-T station,
Huntington Ave, and back to the same place via Forsyth
Street. We sought to observe the cumulative drift that affects
VINS estimations over a longer period of time. Here the GPS
remains in fix state for most of the trajectory and shifts to
float in very few regions due to the buildings. In this scenario,
we observed that the GPS data (blue line) collected in the
urban outdoor environment is accurate to a great extent and
the drift is also minimum. VINS data (red line), on the other
hand, is correct for the first half of the whole course, but
drift can be seen in the second half of the route (it grows
at each step gradually). These observations can be seen in
Fig. 3. IMU data is always susceptible to drift because of the
sensor noise, bias instability, scale factor error, measurements
in the local frame, and misalignment of the sensor itself.
Hence, there is a difference in the GPS and the VINS path.
Thus we need to fuse GPS estimates to minimize this drift
in VINS estimates.

3) Semi Indoor: The Semi Indoor dataset trail begins
outside the Snell library and leads to ISEC. It can be
observed from Fig. 4 that the data collected outdoors is
accurate because GPS (blue line) consistently has the fix.
But as soon as we entered ISEC, we observed that GPS lost
the fix and data showed inaccurate readings. GPS was highly
corrupted and unavailable in the indoor environment. To
overcome this challenge, we use the data from the VINS (red
line) and provide accurate position estimation as it performs
very precisely in indoor conditions for a limited duration of
time. In general, utilizing GPS for global positioning results
in erroneous trajectory owing to satellite orbit inaccuracy,
multi-path effect (reflections/scattering of the signal resulting

Fig. 3. The trajectory of RTK GPS and VINS in the Urban Outdoor
experiment

in oscillations in signal intensity), and inaccurate atmo-
spheric delay modeling. Another observation is the features
being lost due to bright sunlight. When we exited the ISEC
building and started moving towards the Ruggles station,
the sudden brightness due to the sunlight caused a loss
in feature tracking, but the IMU assisted in continuing the
VINS trajectory for a short while. So, the VINS trajectory
remains accurate. Thus utilization of IMU measurements
for short immediate observations, camera measurements for
rich visual information, and GPS for global positioning is
a minimum sensor suite required to handle indoor-outdoor
transitions.

Fig. 4. The trajectory of RTK GPS and VINS in the Semi Indoor
experiment

4) Pure Indoor: This dataset was collected in the tunnels
starting from Curry Student Center and tracing back the
same path. Since RTK GPS completely loses signal in indoor
environments, Fig. 5 shows only the VINS trajectory (green
dots). This experiment is done to show the poor quality
and failure of GPS signals in harsh environments where the
receiver is blocked by buildings. These conditions are where
VINS would help the system maintain its trajectory for a
short while.

C. Dataset

We evaluated GVINS for complex environment dataset
[9]. This experiment’s path covers several tough conditions
that may lead a single-sensor-based system to fail. Fig. 6
shows GVINS and GNSS trajectories, and we can identify
the places where GVINS and GNSS complement each other.



Fig. 5. The trajectory of VINS in the Pure Indoor experiment

GVINS functions well in indoor zones, as seen in Fig. 6,
where the RTK signal exhibits incorrect behavior. Moreover,
for larger distances, accumulated drift becomes inevitable in
VINS, where GNSS has shown its ability to reduce accumu-
lated drift. In areas with bright sunlight, the camera fails to
detect features, and at such places, the data from IMU and
RTK aids in positioning, and the GVINS trajectory continues
to provide the right trajectory. Hence we can say that a
tightly coupled optimization system fusing measurements
from the camera, IMU, and GNSS receiver attains both local
smoothness and global consistency as mentioned in their
work.

Fig. 6. The trajectory of RTK GPS and GVINS in the complex
environment dataset

IV. CONCLUSION AND FUTURE WORK

In this study, we analyzed the problems and possible
sensor failures faced during pose estimation with VINS and
RTK GPS measurements in multiple environments. We con-
ducted real-world experiments to evaluate the performance
of GPS and VINS under different circumstances, and our
results show that even though VINS measurements provide
locally accurate pose estimation, drift error coming from
local frame data expands gradually over a longer duration
of time. GPS signal loses its accuracy and becomes highly
corrupted in urban areas, around high-rise buildings, and
in indoor places. However, the fusion of GPS with visual-
inertial methods can provide a more robust state estimation
in complex environments.

In future work, we will try to fuse the measurements of
GNSS, IMU, and camera together from our hardware setup
to have a locally accurate and globally drift-free trajectory
estimation. We expect to get our queries resolved by the
GVINS team so that we can apply the GVINS algorithm and
verify its effectiveness/robustness compared to other sensor
fusion approaches [6].

We observed from the NUANCE dataset that the GPS data
was collected from the BU-353 GPS module. We would love
to have an opportunity to set up this NTRIP-based RTK-GPS
module for the NUANCE car to utilize its higher accuracy.
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